skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anderson, James H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 12, 2026
  2. Free, publicly-accessible full text available May 19, 2026
  3. Free, publicly-accessible full text available December 10, 2025
  4. Free, publicly-accessible full text available November 6, 2025
  5. Pellizzoni, Rodolfo (Ed.)
    The goal of a real-time locking protocol is to reduce any priority-inversion blocking (pi-blocking) a task may incur while waiting to access a shared resource. For mutual-exclusion sharing on an m-processor platform, the best existing lower bound on per-task pi-blocking under suspension-oblivious analysis is a (trivial) lower bound of (m-1) request lengths under any job-level fixed-priority (JLFP) scheduler. Surprisingly, most asymptotically optimal locking protocols achieve a per-task pi-blocking upper bound of (2m-1) request lengths under JLFP scheduling, even though a range of very different mechanisms are used in these protocols. This paper closes the gap between these existing lower and upper bounds by establishing a lower bound of (2m-2) request lengths under global fixed-priority (G-FP) and global earliest-deadline-first (G-EDF) scheduling. This paper also shows that worst-case per-task pi-blocking can be arbitrarily close to (2m-1) request lengths for locking protocols that satisfy a certain property that is met by most (if not all) existing locking protocols. These results imply that most known asymptotically optimal locking protocols are almost truly optimal (not just asymptotic) under G-FP and G-EDF scheduling. 
    more » « less
  6. Due to the emergence of parallel architectures and parallel programming frameworks, modern real-time applications are often composed of parallel tasks that can occupy multiple processors at the same time. Among parallel task models, gang scheduling has received much attention in recent years due to its performance efficiency and applicability to parallel architectures such as graphics processing units. Despite this attention, the soft real-time (SRT) scheduling of gang tasks has received little attention. This paper, for the first time, considers the SRT-feasibility problem for gang tasks. Necessary and sufficient feasibility conditions are presented that relate the SRTfeasibility problem to the HRT-feasibility problem of “equivalent” task systems. Based on these conditions, intractability results for SRT gang scheduling are derived. This paper also presents server-based scheduling policies, corresponding schedulability tests, and an improved schedulability condition for the global-earlies-tdeadline-first (GEDF) scheduling of gang tasks. Moreover, GEDF is shown to be non-optimal in scheduling SRT gang tasks. 
    more » « less